LET AIS KNOW Images

IMAGE CAPTION GENERATION

Libin Liang, Yao Song, Ruofan Yu Department of Statistics Rutgers University

INTRODUCTION

- Objections in the figure:
 - A white dog
 - A red ball

Relationship in the figure:

- A white dog
- Jumping in the air
- Catching
- A red ball

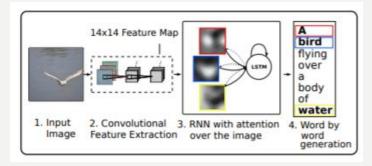
Caption:

• A white dog is jumping in the air attempting to catch a red ball.

RELATED WORK

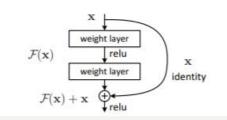
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (2016)

- Using Attention scheme: Attention scheme allows salient features to the forefront as needed
- Using CNN to distill information from image: Generate features vectors for attention scheme
- Using LSTM to generate natural language



CNN Architectures

- DenseNet: connects each layer to every other layer in a feed-forward fashion.
- Resnet: layers fit a residual mapping



CHALLENGES

- How to distill information from the image efficiently ?
 - Lower features of CNN. Informative and efficient representation of the image and also keep the 2-D structure.
 - > Which kinds of CNN architecture is good?
- How to allow salient features to the forefront as needed?
 - > Attention Scheme.
 - > How to incoporate it in the NLP model? LSTM or Transformer
- How to evaluate?
 - Automatic Metric: BLEU and METEOR: Considering the words precision, synonyms and recalls
- Difficulties from Coding:
 - Complicated Structure of Transformer
 - ✓ Develop Layer classes and then integrate
 - How to cooperate for coding?
 - Full communication beforehand to clarify the function of each component.
 - \checkmark Clarify the shape and data type of input and output in each part.

CONTRIBUTIONS

- Combine CNN and LSTM with the MLP attention mechanism
- Image Attention + Caption Attention
 Attentional Context
- Different CNN models
- VGG19, Resnet152 and Densenet161
- Compare training-time and performance on Flicr8k dataset
- BLEU metric (BLEU-1, 2, 3, 4) and METEOR metric
- Transformer Blocks in Decoder
- Transformer replaces LSTM with added attention mechanisms
- Compare training-time and performance

EXPERIMENT

- Data : Flickr8k , 8000 images, each with 5 reference sentences
- Evaluation procedures : BLEU and METEOR
- Quantitative analysis

	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
Densenet161: embedding size 300	73.62	61.47	54.59	49.62	63.77
Densenet161: embedding size 50	69.98	56.11	48.17	42.52	59.25
Resnet101	55.87	33.79	20.58	12.26	37.73
VGG19	52.65	30.42	18.02	10.28	35.83
Densenet: Transformer as Decoder	49.01	29.75	19.78	13.48	32.70
Best result in Show, Attend and Tell paper	67	45.7	31.4	21.3	20.3

Table 1: BLEU and METEOR metrics compared among different architectures

EXPERIMENT

• Caption examples

a man wearing a jean jacket nd a pair of jeans walking next to a red brick building . three

a group of people play soccer on a court .

three people stand outside a fast food joint with their drinks .

a man and woman are standing near a brick wall holding a video camera .

CONCLUSIONS

- Proposed an attention-based combination of different CNN architectures and LSTM or Transformer to generate captions on the image efficiently
- DenseNet has the best performance among three CNN architectures
- LSTM outperforms Transformer blocks in decoding
- Learnt captions correspond very well to human intuition