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Background

Interpolating Estimators: Estimators that have zero error in training set.

min-norm Least-Square: The min−l2 norm least square estimator
(β̂ = (XTX )+XTY or β̂ = limλ→0 β̂λ = (XTX + λI )+XTY )

Why the High-dimensional min-norm Least-Square Interpolation is of
interest?

Interpolating Estimators such as Neural Network can have good
generalization results in practical application.

High-dimensional Least-Square Interpolator is one of the simplest
interpolating estimators we can study.

Min-norm Least-Square Interpolator will be selected by Gradient
Descent given zero initial and proper learning rate.
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Overview

Models Discussion:
1 Linear Regression with Isotropic Features
2 Latent Space Model

Characteristics of Covariance Matrix

Promising Direction
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Linear Regression with Isotropic Features

yi = xTi β + ϵi

where xi ∈ Rp, the components of xi are independent, zero mean, unit
variance and with bounded moments of all order.

Numerical Study Setting:
xi ∼ N(0, Ip) ϵi ∼ N(0, 1)
β = ( 1√

p , ...,
1√
p )

number of sample n = 200
p = 100− 1200

Repeat 100 times for each pair (n, p) and take the average of in-sample
error and out-sample error.
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Linear Regression with Isotropic Features

Figure: In-sample error(Left) VS Out-sample error(Right)
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Linear Regression with Isotropic Features

BiasX = E [(xT0 ((XTX )+XTXβ − β))2|X ]

VarianceX = E [(xT0 (XTX )+XT ϵ)2|X ]

Figure: Bias error(Left) VS Variance (Right)
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Linear Regression with Isotropic Features

Overparameterization helps reducing the variance but it will increase
the bias

β̃ = (XTX )+XTXβ is the projection of β onto the eigenvectors space of
XTX .

If xi is isotropic, the direction of eigenvectors space of XTX are
symmetric. And the number of eigenvectors of XTX is n.

||β̃||22 = β̃Tβ ≈ ||β||22 ∗ n
p ⇒ ||β̃ − β||22 = ||β||22 ∗

p−n
p

What happen if the eigenvectors space of XTX is more aligned with β
when p is increasing?
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Latent Space Model

Latent covariates: zi ∈ Rd , i = 1, ..., n with components are
independent.

True Model: yi = θTi zi + ξi , ξi ∼ N(0, σ2ξ )

We only observe: xi = (xi1, ..., xip) ∈ Rp

xij = wT
j zi + uij , where wj ∈ Rd and uij ∼ N(0, 1)

Notice that Var(wT
j zi )/var(uij) = wT

j wj = SNR for xj
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Latent Space Model

Let W =

wT
1
...

wT
p


The linear model wrt to y and x is

yi = xTi β + ϵi ϵi ∼ N(0, σ2)

with
Σx = Ip +WW T

β = E [x0x
T
0 ]−1E [x0y ] = W (Id +W TW )−1θ

σ2 = σ2ξ + θT (Id +W TW )θ
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Latent Space Model

Experiment Setting:

zi ∼i .i .d N(0, Id), θ = (1/
√
d , ..., 1/

√
d)T , ξi ∼ N(0, 1).

Averge SNR for (xi1, ..., xip) is 1,
1
p

∑p
i=1 w

T
j wj =

1
p tr(WW T ) = 1

The singular values of the W are the same, WLOG, W =

(√
p
d Id

0

)
.

d = 20, n = 200, p = 100 - 1200

Repeat 100 times for each pair (n, p) and take the average of in-sample
error and out-sample error.

Errors are wrt to model yi = xiβ + ϵi , ϵi ∼ N(0, σ2)
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Latent Space Model

Figure: In-sample error(Left) VS Out-sample error(Right)
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Latent Space Model

Figure: Bias error(Left) VS Variance (Right)
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Characteristics of Covariance Matrix

Isotropic Features Linear model: Σx = Ip, β = (1/
√
p, ..., 1/

√
p)T

Latent Space model:

Σx =

(
( pd + 1)Id 0(dp−d)

0p−d×d Ip−d

)
β = (

√
p/(p+ d), ...,

√
p/(p+ d), 0, ..., 0)T

For latent space model, in overparameterization scheme:

A gap between leading eigenvalues and tailed eigenvalues

The gap gets larger as p increases.

The true β lines in the space of leading eigenvectors

The number of tailed eigenvalues are large and decay slowly.
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Characteristics of Covariance Matrix

λ1 ≥ λ2 ≥ ... ≥ λp be the eigenvalues of Σx

v1, ..., vp are the corresponding eigenvector

Ĥn(s) =
1
p

∑p
i=1 1{s≥λi} Ĝn(s) =

1
||β||22

∑p
i=1 < β, vi >

2 1{s≥λi}

Theorem 2(Hastie , Montanari, etc 2019)
Let γ = p

n and c0 is the solution of 1− 1
γ =

∫
s

1+c0γs
dĤn(s)

Define B(Ĥn, Ĝn, γ) = ||β||2{1 + γc0

∫
s2

(1+c0γs)2
dĤn(s)∫

s
(1+c0γs)2

dĤn(s)
}
∫

s
(1+c)γs)2

dĜn(s)

V (Ĥn, γ) = σ2γc0

∫
s2

(1+c0γs)2
dĤn(s)∫

s
(1+c0γs)2

dĤn(s)

Given Ĥn(s) → H(s) and Ĝn(s) → G (s) and certain assumptions, we have

BiasX → B(H,G , γ) and VarianceX → V (H, γ)
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Characteristics of Covariance Matrix

The effect of the magnitude of the gap

1
p

∑p
i=1 w

T
j wj =

1
p tr(WW T ) = µ = 0.001

Σx =

(
( p
d
∗ µ+ 1)Id 0d×p−d

0p−d×d Ip−d

)
β = (

√
µp/(µp + d), ...,

√
µp/(µp + d), 0, ..., 0)T

p
n → γ and d

p → ψ and d
n = γ ∗ ψ = 0.1

Figure: Asymptotic Total risk(Left) VS Asymptotic Variance (Middle) VS Asymptotic
Bias(Right) for µ = 0.001
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Characteristics of Covariance Matrix

The effect of the tailed eigenvalues decays slowly

Σx =

(
( pd + 1)Id 0d×p−d

0p−d×d Λp−d

)
and Λ = Diag(λp−d+1, ..., λp)

1
p−d

∑
i 1{s≥λi} → sα(s ∈ [0, 1], α > 0), small α relates to fast decay rate.

Figure: Asymptotic Variance for different decay rates
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Thank you!
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