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Background

Interpolating Estimators: Estimators that have zero error in training set.

min-norm Least—Square:AThe min—lf norm least square estimator
(B=(XTX)"XTY or p =limy0 5y = (XTX + XN)TXTY)

Why the High-dimensional min-norm Least-Square Interpolation is of
interest?

@ Interpolating Estimators such as Neural Network can have good
generalization results in practical application.

@ High-dimensional Least-Square Interpolator is one of the simplest
interpolating estimators we can study.

@ Min-norm Least-Square Interpolator will be selected by Gradient
Descent given zero initial and proper learning rate.
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Overview

@ Models Discussion:

@ Linear Regression with Isotropic Features
@ Latent Space Model

@ Characteristics of Covariance Matrix

@ Promising Direction
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Linear Regression with Isotropic Features

Yi= X;Tﬂ + €

where x; € RP, the components of x; are independent, zero mean, unit
variance and with bounded moments of all order.

Numerical Study Setting:
xi ~ N(0,1,) ¢; ~ N(0,1)

_ (1 1
8= (\/ﬁ7 ey ﬁ)
number of sample n = 200
p =100 — 1200

Repeat 100 times for each pair (n, p) and take the average of in-sample
error and out-sample error.
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Linear Regression with Isotropic Features
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Figure: In-sample error(Left) VS Out-sample error(Right)
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Linear Regression with Isotropic Features

Biasx = E[(x{ (XTX)TXTXB - B))?X]

Variancex = E[(xg (XTX)TXTe€)?|X]

Figure: Bias error(Left) VS Variance (Right)
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Linear Regression with Isotropic Features

@ Overparameterization helps reducing the variance but it will increase
the bias

B = (XTX)tXTXp is the projection of 3 onto the eigenvectors space of
XTX.

If x; is isotropic, the direction of eigenvectors space of X7 X are
symmetric. And the number of eigenvectors of X7 X is n.

15113 =8BT8~ 11813 * 5 = |5~ BIE = [Bl13+ 25"

P

What happen if the eigenvectors space of X T X is more aligned with /3
when p is increasing?
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Latent Space Model

Latent covariates: z; € R, i =1,...,n with components are
independent.

True Model: y; =07z +¢&;, & ~ N(O,Ug)
We only observe: x; = (xi1, ..., Xip) € RP
Xjj = Wsz,- + ujj, where wj € R and u;; ~ N(0,1)

Notice that Var(w, z;)/var(u;) = w;” w; = SNR for x;
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Latent Space Model

wy

Let W = :
-

Wp

The linear model wrt to y and x is

vi=x'B+e e~ N0, ?)
with
S= b+ WWT

B = E[xoxg | 1E[xoy] = W(lg + WT W)~ 19

o2 =aZ+07(lg+WTW)o
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Latent Space Model

Experiment Setting:
o zi~ija N0, 1g), 0= (1/Vd,...,1/Vd)T, &~ N(0,1).

e Averge SNR for (xi1, ..., Xip) is 1, % - WJ-TWJ' = %tr(WWT) =1

. \/E/d
@ The singular values of the W are the same, WLOG, W = d .
0

e d =20, n= 200, p= 100 - 1200

Repeat 100 times for each pair (n, p) and take the average of in-sample
error and out-sample error.

Errors are wrt to model y; = x;3 + ¢, € ~ N(0,0?)
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Latent Space Model

000
—
~
15
—_—

005
L
.
~
!
loglout sample error)
05 10
N
.
—
-
s

log(in sample efror)
0.0
L

015
R
AN
AN
e

o ™~
° I NS
o / RN S
s / .
/ .
/ E ~—
02 00 02 04 06 08 02 00 02 04 08 08
log(pin) log(pin)

Figure: In-sample error(Left) VS Out-sample error(Right)
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Figure: Bias error(Left) VS Variance (Right)
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Characteristics of Covariance Matrix

Isotropic Features Linear model: ¥, = I,, 8= (1//p,....1//P)"

Latent Space model:

zx — ((Z + ]-)Id 0(dpfd)
Op—dxd lo—d

> 8= (yB/(p+d),....\/B/(p+d),0,..,0)7

Fo

=

latent space model, in overparameterization scheme:
A gap between leading eigenvalues and tailed eigenvalues
The gap gets larger as p increases.

The true S lines in the space of leading eigenvectors

The number of tailed eigenvalues are large and decay slowly.
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Characteristics of Covariance Matrix

A1 > A2 > ... > A, be the eigenvalues of 3,
Vi, ..., Vp are the corresponding eigenvector

N

Ho(s) = 5P 1issny  Gals) = m S < Bvi > Lissayy

Theorem 2(Hastie , Montanari, etc 2019)

Let v = 2 and ¢ is the solution of 1 — = = [ 1+Cwsdlfln(s)
H A 2 / (1+co2’v5) dh(s (s)
Defme B(Hm Gn’ ) = ||B|| {1 + ’7C0f (1+co'ys)2 /_”, (S)}f (1+cws QdG ( )

~ dH,
V(Hn7) = 0?76 iﬁﬂ ©

s
(1+c0'ys)2 "(S)

Given H,(s) — H(s) and G,(s) — G(s) and certain assumptions, we have

Biasx — B(H, G,~) and Variancex — V(H,~)
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Characteristics of Covariance Matrix

@ The effect of the magnitude of the gap

s> wh %tr(WWT) = =0.001

p 2ui=1 W Wj =
P+ 1)y Ogxp
mo= (oDl 000 d) o () (-t o) B 1 + )0, 0)T

Asymptote varance sk Asymptotc s sk
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Figure: Asymptotic Total risk(Left) VS Asymptotic Variance (Middle) VS Asymptotic
Bias(Right) for 1 = 0.001
April 29, 2022
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Characteristics of Covariance Matrix

@ The effect of the tailed eigenvalues decays slowly

B4 1)y Ogxp _
T = <( gp—dx)dd 7\,X:dd> and A = Diag(Ap_d i1, Ap)

pfld Yoilis>ay — s%(s €10,1],a > 0), small « relates to fast decay rate.

Asymptotic variance error

Figure: Asymptotic Variance for different decay rates
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Thank you!
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